חAmIBIA UחIVERSITY
 OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: OCH701S	COURSE NAME: ORGANIC CHEMISTRY 2
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. MARIUS MUTORWA
MODERATOR:	DR. RENATE HANS

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black in and sketches must be done in pencil
5. No book, notes and other additional aids are allowed

- PERMISSIBLE MATERIALS

Non-programmable Calculators

- ATTACHMENTS

NMR and IR Spectral Data, pKa Chart and Periodic Table

- QUESTION 1: Multiple Choice Questions
- There are 25 multiple choice questions and each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
1.1 Consider the three organic compounds drawn below. Which of the following statements is (are) true about the IR spectra of A, B, and C ?

A

B

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

C
A. A shows strong absorptions at $3000 \mathrm{~cm}-1$ and $1700 \mathrm{~cm}^{-1}$.
B. B shows strong absorptions at $3000 \mathrm{~cm}-1$ and $2250 \mathrm{~cm}^{-1}$.
C. C shows strong absorptions at $3000 \mathrm{~cm}-1$ and $3200-3600 \mathrm{~cm}^{-1}$.
D. Statements (A shows strong absorptions at $3000 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$) and (C shows strong absorptions at $300 \mathrm{~cm}^{-1}$ and $3200-3600 \mathrm{~cm}^{-1}$) are true.
E. Statements (A shows strong absorptions at $3000 \mathrm{~cm}^{-1}$ and $1700 \mathrm{~cm}^{-1}$), (B shows strong absorptions at $3000 \mathrm{~cm}^{-1}$ and $2250 \mathrm{~cm}^{-1}$), and (C shows strong absorptions at $3000 \mathrm{~cm}^{-1}$ and $3200-3600 \mathrm{~cm}^{-1}$) are all true.
1.2 Which molecular formula is consistent with the following mass spectrum data?
M^{+}at $m / z=84$, relative height $=10.0 \%$
$(M+1)^{+}$at $m / z=85$, relative height $=0.56 \%$
A. $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$
B. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$
C. $\mathrm{C}_{5} \mathrm{H}_{24}$
D. $\mathrm{C}_{6} \mathrm{H}_{12}$
E. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
1.3 Identify the structure that is consistent with the following data.
a. The IR includes peaks at 1603 and $1495 \mathrm{~cm}^{-1}$.
b. The ${ }^{13} \mathrm{C}$ NMR has a total of 7 signals.
c. The compound has one acidic proton.

A

B

C

D
A. A
B. B
C. C
D. D
E. None of the above
1.4 Which of the following compounds will produce a prominent ($\mathrm{M}-18$) peak in the mass spectrum?
A. 2-methylheptane
B. 1-heptanol
C. Heptanamine
D. Heptanal
E. None of the above
1.5 How many different proton environments are present in each of the following molecules?
A

B

C

A. $A=6 ; B=3$ and $C=4$
B. $A=5 ; B=3$ and $C=4$
C. $A=6 ; B=4$ and $C=5$
D. $A=6 ; B=4$ and $C=4$
1.6 Which of the indicated protons absorbs furthest downfield in NMR?

A. Ha
B. Hb
C. Hc
D. Hd
E. He
1.7 Which of the following type of protons are chemically equivalent?
A. Homotopic
B. Enantiotopic
C. Diastereotopic
D. $A \& B$
E. B \& C
1.8 Which of the following compounds is the kinetic product of the reaction of HBr with 1,3cyclohexadiene?

A

B

C

D
A. A
B. B
C. C
D. D
E. A \& D
1.9 Which of the following statements about Diels-Alder reaction is false?
A. The reaction is stereospecific
B. The diene must be in the s-cis conformation in order to react
C. The dienophile must contain an electron withdrawing group
D. The diene and dienophile line up so that the exo product is favoured.
1.10 Which of the following dienophiles is most reactive in a Diels-Alder reaction?

A.

B.

C.

D.
A. A
B. B
C. C
D. D
1.11 Which of the following conjugated dienes would not react with a dienophile in a Diels-Alder reaction?
I.

III.

II.

IV.

A. I
B. II
C. III
D. IV
E. I \& III
1.12 Which of the following compounds is not aromatic?

A.

B.

C.

D.
A. A
B. B
C. C
D. D
1.13 What is the IUPAC name for the following compound?

A. 6-ethyl-3-nitrobenzoic acid
B. 1-ethyl-4-nitrobenzoic acid
C. 2-ethyl-5-nitrobenzoic acid
D. 2-ethyl-5-nitrobenzaldehyde
E. 4-nitro-3-carboxyethylbenzene
1.14 Which structures are aromatic?

I

II

III

IV
A. II and III
B. III and IV
C. I and III
D. II and IV
1.15 Arrange the compounds in order of increasing reactivity towards electrophilic substitution?

I

II

III

IV
A. II, I, IV, III
B. I, III, IV, II
C. III, I, IV, II
D. IV, III, II, I
1.16 Which of the following statements is (are) true about electrophilic aromatic substitution?
A. The methoxy group is an ortho, para activator because of a strong electron donating effect
B. The methoxy group is an ortho, para director because of a strong electron withdrawing inductive effect
C. The methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect
D. Statement A (The methoxy group is an ortho, para activator because of a strong electron donating effect) and Statement C (the methoxy group is an ortho, para activator because the O atom is an electronegative atom strong electron donating effect) are the only true statements.
1.17 What is the structure of the final product resulting from the sequence of reactions shown below?

A. 1-chloro-4-nitrobenzene
B. 1-chloro-3-nitrobenzene
C. 1-chloro-2nitrobenzene
D. a mixture of 1-chloro-4-nitrobenzene and 1-chloro-2-nitrobenzene
1.18 Choose the best reagent to carry out the reaction below?

A. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$
B. (1) $\mathrm{O}_{3},(2) \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$
D. NaH
E. None of the above
1.19 What is the correct name for the following compound?

A. 3-methyl-4-ethyl-3-hexen-6-ol
B. 4-ethyl-3-methyl-3,6-hexenol
C. 3-ethyl-4-methyl-3-hexen-1-ol
D. 3-methyl-4-(2-hydroxyethyl)-3-hexene
E. 3-(2-hydroxyethyl)-3-methyl-3-hexene
1.20 Select the correct reagent(s) for the following reaction.

A. $\mathrm{LiAlH}_{4} /$ ether; then $\mathrm{H}_{3} \mathrm{O}^{+}$
B. NaBH_{4}; then $\mathrm{H}_{3} \mathrm{O}^{+}$
C. H_{2} and Pt / C
D. B and C above are correct
1.21 What is the correct name for the following compound?

A. 1,1,2-trimethyl-1,3-hexenone
B. 1,2-dimethyl-1,3-hexenone
C. 2,3-dimethyl-1,3-heptenone
D. 2,3-dimethyl-2-hepten-4-one
1.22 Select the product of the following reaction.

A.

B.

C.

D.
A. A
B. B
C. C
D. D
1.23 Why do aldehydes undergo nucleophilic addition reactions while esters undergo nucleophilic acyl substitution reactions?
A. The carbonyl carbon of an ester is more electrophilic than that of an aldehyde.
B. Aldehydes are more sterically hindered than esters.
C. Once the nucleophile adds to an aldehyde, the tetrahedral intermediate is too sterically hindered to eliminate one of the attached groups.
D. The ester carbonyl carbon is $s p^{3}$ hybridized while the aldehyde carbonyl carbon is $s p^{2}$ hybridized.
E. Once the nucleophile adds to an aldehyde, neither H - nor R - can be eliminated since they are strongly basic.
1.24 Which one of the following is the strongest acid?
A. benzoic acid
B. 4-nitrobenzoic acid
C. 4-ethylbenzoic acid
D. 4-chlorobenzoic acid
1.25 Why would the alcohol in the following compound need to be protected before the reaction?

A. If it is not protected, the product will be a carboxylic acid
B. The Grignard reagent will react with the alcohol before the ketone
C. Magnesium is Lewis acidic and will coordinate with the alcohol
D. There is no need to protect the alcohol

QUESTION 2

Identify the lettered reagents (A-H) in the following reaction sequence.
Note: 2 marks for each intermediate
(a)

QUESTION 3

Draw a full detailed mechanism for the reaction below. In order to receive full marks, show all intermediates and flow of electrons using the appropriate arrows.

Note: 1 mark for each appropriate arrow

QUESTION 4

Use the ${ }^{1} \mathrm{H}$ NMR spectral table provided to identify the structure of compound X with the following ${ }^{1} \mathrm{H}$ NMR spectral data:

- Molecular formula: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$
- ${ }^{1} \mathrm{H}$ NMR (ppm)
: 0.94 (doublet, 6 H)
: 1.15 (triplet, 3 H)
: 1.91 (multiplet, 1 H)
: 2.33 (quartet, 2 H)
: 3.86 (doublet, 2 H)
- IR absorption at $\sim 1720 \mathrm{~cm}^{-1}$

THE END
GOODLUCK

${ }^{1} \mathrm{H}$ NMR SPECTRAL DATA

Characteristic Chemical Shifts of Common Types of Protons

Type of proton	Chemical shift (ppm)	Type of proton	Chemical shift (ppm)
	0.9-2		4.5-6
- RCH_{3} - $\mathrm{R}_{2} \mathrm{CH}_{2}$ - $\mathrm{R}_{3} \mathrm{CH}$	$\begin{aligned} & \sim 0.9 \\ & \sim 1.3 \\ & \sim 1.7 \end{aligned}$		6.5-8
$\mathrm{Z}=\mathrm{C}, \mathrm{O}, \mathrm{~N}$	1.5-2.5		9-10
$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	-2.5		10-12
$\mathrm{Z}=\mathrm{N}, \mathrm{O}, \mathrm{X}$	2.5-4	$\mathrm{RO}-\mathrm{H}$ or	1-5

Important IR Absorptions

Bond type	Approximate $\overline{\mathrm{V}}\left(\mathrm{cm}^{-1}\right)$	Intensity
$\mathrm{O}-\mathrm{H}$	3600-3200	strong, broad
$\mathrm{N}-\mathrm{H}$	3500-3200	medium
$\mathrm{C}-\mathrm{H}$	~3000	
- $\mathrm{C}_{\text {Sp }}{ }^{3}-\mathrm{H}$	3000-2850	strong
- $\mathrm{C}_{s p^{2}-\mathrm{H}}$	3150-3000	medium
- $\mathrm{C}_{\text {sp }}-\mathrm{H}$	3300	medium
$\mathrm{C} \equiv \mathrm{C}$	2250	medium
$\mathrm{C} \equiv \mathrm{N}$	2250	medium
$\mathrm{C}=0$	1800-1650 (often ~1700)	strong
$\mathrm{C}=\mathrm{C}$	1650	medium
	1600, 1500	medium

$\begin{array}{c\|} \hline \text { nydrogen } \\ 1 \\ 4 \\ 1.0179 \\ \hline \end{array}$																		$\begin{gathered} \text { hellium } \\ 2 \\ \text { He } \\ 4.00 \% 6 \end{gathered}$		
Ithium 3	beryllim 4												boron 5	carbon 6	ni:rogen 7	cxyen 8	$\begin{gathered} \text { Illuorine } \\ 9 \end{gathered}$	$\begin{gathered} \text { neon } \\ 10 \end{gathered}$		
\pm	Be												8	C	N	0	5	Ne		
3. 541	9.0122												1 C .811	12.011	14.007	15.999	18.993	20.180		
$\begin{gathered} \text { sodium } \\ 11 \end{gathered}$	$\begin{array}{\|c} \hline \text { magnesium } \\ 12 \end{array}$												aumin um 13	$\begin{gathered} \text { slicon } \\ 14 \end{gathered}$	$\begin{array}{\|c} \hline \text { Fhosphorus } \\ 15 \end{array}$	$\begin{gathered} \text { sulfur } \\ 16 \end{gathered}$	$\begin{gathered} \text { chlorire } \\ 17 \end{gathered}$	$\begin{gathered} \text { argol } \\ 18 \end{gathered}$		
Na	Mg												A	SI	P	S	Cl	Ar		
22.990	24.305												$2 ¢ .982$	28.036	33.974	52.065	35.453	39.948		
$\begin{array}{c\|} \hline \text { podassium } \\ 19 \end{array}$	calclum 20		$\begin{aligned} & \hline \text { scendiun } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { titaniur } \\ & 22 \end{aligned}$	$\begin{gathered} \hline \text { vanatium } \\ 23 \end{gathered}$	$\begin{aligned} & \hline \text { chromium } \\ & 24 \end{aligned}$	manganess 25	$\begin{aligned} & \text { iror } \\ & 26 \end{aligned}$	$\begin{gathered} \text { cobalt } \\ 27 \end{gathered}$	$\begin{gathered} \hline \text { nickel } \\ 28 \end{gathered}$	$\begin{gathered} \text { copper } \\ 29 \end{gathered}$	$\begin{aligned} & \text { znc } \\ & 30 \end{aligned}$	$\begin{gathered} \text { gallium } \\ 31 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { germaniun } \\ 32 \\ \hline \end{array}$	$\begin{gathered} \text { arsenic } \\ 33 \end{gathered}$	$\begin{gathered} \text { selenium } \\ 34 \end{gathered}$	$\begin{gathered} \text { bromine } \\ 35 \end{gathered}$	$\begin{gathered} \text { krijpton } \\ 36 \end{gathered}$		
K	Co		Sc	\square	V	Cr	Mn	Fe	CO	Nil	CU	Zn	$G a$	Ge	$A S$	Se	Br	Kr		
59.098	40.078		44.956	47.267	50.942	51.396	54938	55.845	58.933	58.693	63.546	65.39	6 C .723	72.61	74.922	78.96	79.904	83.80		
$\begin{gathered} \text { cubidium } \\ 37 \end{gathered}$	$\begin{aligned} & \text { s.o.ontium } \\ & \hline 38 \end{aligned}$		$\begin{aligned} & \text { ytrium } \\ & \hline 39 \end{aligned}$	$\begin{aligned} & \text { zirconium } \\ & \hline 40 \end{aligned}$	nobiun 41	$\begin{array}{\|c\|} \hline \text { molybjenum } \\ 42 \end{array}$	$\begin{gathered} \text { teshneturn } \\ 43 \end{gathered}$	rutteniun 44	$\begin{gathered} \text { rhodium } \\ 45 \end{gathered}$	palladiun 46	$\begin{aligned} & \text { silver } \\ & 47 \end{aligned}$	$\begin{gathered} \text { cac.os } \\ \hline \text { caium } \\ \hline \end{gathered}$	$\begin{gathered} \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & \operatorname{lin} \\ & 50 \end{aligned}$	antirrony 51	$\begin{gathered} \text { Lelluium } \\ 52 \end{gathered}$	iocine 53	$x \in \operatorname{mon}$ 54		
Ro	Sr		Y	7 I	NO	Mo	$T C$	Ru	$R h$	Pd	$A g$	Cd	In	$S n$	Sb	Te	$\\|$	Me		
85.468	87.62		88.906	91.224	¢2.906	95.94	[98]	101.07	102.91	106.42	-07.87	112.41	114.82	118.71	12176	127.60	126.90	131.29		
caesium	jatium		lutetium	hafnium	tantalum	tunçsten	thenium	osnium	irdium	platinum	gold	mercury	thallitm	lead	bismuth	poloniun	astatire	radol		
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
CS	Ba	*	$\boxed{L U}$	H^{4}	Ta	V	Re	Os	$\\| \Gamma$	$P t$	AU	Hg	$\rrbracket \\|$	Pb	$8 i$	P_{0}	$A t$	Rn		
132.9 ${ }^{\circ}$	137.33		174.97	178.49	180.95	183.84	183. 21	190.23	192.22	195.0ε	$\cdot 9 \mathrm{C.9}$?	200.59	264.38	2072	23898	[209]	[210]	[¿22]		
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	$\begin{gathered} \text { adium } \\ 88 \end{gathered}$	89.102	$\begin{array}{\|c} \hline \text { Iewrencium } \\ 103 \end{array}$	$\begin{array}{\|c\|} \hline \text { rutherfordum } \\ 104 \end{array}$	$\begin{gathered} \text { dubnium } \\ 105 \end{gathered}$	$\begin{gathered} \text { seaborg um } \\ 106 \end{gathered}$	$\begin{gathered} \text { bohrium } \\ 107 \end{gathered}$	$\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$	$\begin{gathered} \text { meitnerium } \\ 109 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { ununnililim } \\ 110 \end{array}$	$\begin{array}{\|c\|} \hline \text { Unsinunilim } \\ \hline \end{array}$	$\begin{aligned} & \text { ununbium } \\ & 112 \end{aligned}$		$\begin{array}{\|c\|} \hline \text { urunquadium } \\ 114 \end{array}$						
Fr [223]	Ra [226]	$\cdots *$	Lr [262]	$\begin{aligned} & \text { Rf } \\ & {[261]} \end{aligned}$	00 [262]	Sg [266]	Bh [264:	Hs [269]	MT [268]	Uun 271]	Uuu [272]	Uub [277]		$\underset{[289]}{U_{\text {UG }}}$						

